模型检查被广泛应用于验证与规范的复杂系统和并发系统的正确性。纯符号方法虽然受欢迎,但仍遭受了状态空间爆炸问题,这使得它们对于大型系统和/或规格不切实际。在本文中,我们建议使用图表学习(GRL)来求解线性时间逻辑(LTL)模型检查,其中系统和规范分别由B \“ Uchi Automaton和LTL公式表示。基于基于的框架八元旨在学习图形结构化系统和规范的表示,该系统将模型检查问题减少到潜在空间中的二进制分类。经验实验表明,八倍体在三个不同的不同不同的SOTA模型检查器上实现了可比的精度数据集,最高$ 5 \ times $ $总体加速,超过$ 63 \ times $ $,仅需进行满意度检查。
translated by 谷歌翻译
由于现实世界图形/网络数据中的广泛标签稀缺问题,因此,自我监督的图形神经网络(GNN)非常需要。曲线图对比度学习(GCL),通过训练GNN以其不同的增强形式最大化相同图表之间的表示之间的对应关系,即使在不使用标签的情况下也可以产生稳健和可转移的GNN。然而,GNN由传统的GCL培训经常冒险捕获冗余图形特征,因此可能是脆弱的,并在下游任务中提供子对比。在这里,我们提出了一种新的原理,称为普通的普通GCL(AD-GCL),其使GNN能够通过优化GCL中使用的对抗性图形增强策略来避免在训练期间捕获冗余信息。我们将AD-GCL与理论解释和设计基于可训练的边缘滴加图的实际实例化。我们通过与最先进的GCL方法进行了实验验证了AD-GCL,并在无监督,6 \%$ 14 \%$ 6 \%$ 14 \%$ 6 \%$ 6 \%$ 3 \%$ 3 \%$达到半监督总体学习设置,具有18个不同的基准数据集,用于分子属性回归和分类和社交网络分类。
translated by 谷歌翻译
The COVID-19 pandemic created a deluge of questionable and contradictory scientific claims about drug efficacy -- an "infodemic" with lasting consequences for science and society. In this work, we argue that NLP models can help domain experts distill and understand the literature in this complex, high-stakes area. Our task is to automatically identify contradictory claims about COVID-19 drug efficacy. We frame this as a natural language inference problem and offer a new NLI dataset created by domain experts. The NLI framing allows us to create curricula combining existing datasets and our own. The resulting models are useful investigative tools. We provide a case study of how these models help a domain expert summarize and assess evidence concerning remdisivir and hydroxychloroquine.
translated by 谷歌翻译
This volume contains revised versions of the papers selected for the third volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.
translated by 谷歌翻译
Deep learning models operating in the complex domain are used due to their rich representation capacity. However, most of these models are either restricted to the first quadrant of the complex plane or project the complex-valued data into the real domain, causing a loss of information. This paper proposes that operating entirely in the complex domain increases the overall performance of complex-valued models. A novel, fully complex-valued learning scheme is proposed to train a Fully Complex-valued Convolutional Neural Network (FC-CNN) using a newly proposed complex-valued loss function and training strategy. Benchmarked on CIFAR-10, SVHN, and CIFAR-100, FC-CNN has a 4-10% gain compared to its real-valued counterpart, maintaining the model complexity. With fewer parameters, it achieves comparable performance to state-of-the-art complex-valued models on CIFAR-10 and SVHN. For the CIFAR-100 dataset, it achieves state-of-the-art performance with 25% fewer parameters. FC-CNN shows better training efficiency and much faster convergence than all the other models.
translated by 谷歌翻译
Building segmentation in high-resolution InSAR images is a challenging task that can be useful for large-scale surveillance. Although complex-valued deep learning networks perform better than their real-valued counterparts for complex-valued SAR data, phase information is not retained throughout the network, which causes a loss of information. This paper proposes a Fully Complex-valued, Fully Convolutional Multi-feature Fusion Network(FC2MFN) for building semantic segmentation on InSAR images using a novel, fully complex-valued learning scheme. The network learns multi-scale features, performs multi-feature fusion, and has a complex-valued output. For the particularity of complex-valued InSAR data, a new complex-valued pooling layer is proposed that compares complex numbers considering their magnitude and phase. This helps the network retain the phase information even through the pooling layer. Experimental results on the simulated InSAR dataset show that FC2MFN achieves better results compared to other state-of-the-art methods in terms of segmentation performance and model complexity.
translated by 谷歌翻译
Object detection and classification using aerial images is a challenging task as the information regarding targets are not abundant. Synthetic Aperture Radar(SAR) images can be used for Automatic Target Recognition(ATR) systems as it can operate in all-weather conditions and in low light settings. But, SAR images contain salt and pepper noise(speckle noise) that cause hindrance for the deep learning models to extract meaningful features. Using just aerial view Electro-optical(EO) images for ATR systems may also not result in high accuracy as these images are of low resolution and also do not provide ample information in extreme weather conditions. Therefore, information from multiple sensors can be used to enhance the performance of Automatic Target Recognition(ATR) systems. In this paper, we explore a methodology to use both EO and SAR sensor information to effectively improve the performance of the ATR systems by handling the shortcomings of each of the sensors. A novel Multi-Modal Domain Fusion(MDF) network is proposed to learn the domain invariant features from multi-modal data and use it to accurately classify the aerial view objects. The proposed MDF network achieves top-10 performance in the Track-1 with an accuracy of 25.3 % and top-5 performance in Track-2 with an accuracy of 34.26 % in the test phase on the PBVS MAVOC Challenge dataset [18].
translated by 谷歌翻译
Memes are powerful means for effective communication on social media. Their effortless amalgamation of viral visuals and compelling messages can have far-reaching implications with proper marketing. Previous research on memes has primarily focused on characterizing their affective spectrum and detecting whether the meme's message insinuates any intended harm, such as hate, offense, racism, etc. However, memes often use abstraction, which can be elusive. Here, we introduce a novel task - EXCLAIM, generating explanations for visual semantic role labeling in memes. To this end, we curate ExHVV, a novel dataset that offers natural language explanations of connotative roles for three types of entities - heroes, villains, and victims, encompassing 4,680 entities present in 3K memes. We also benchmark ExHVV with several strong unimodal and multimodal baselines. Moreover, we posit LUMEN, a novel multimodal, multi-task learning framework that endeavors to address EXCLAIM optimally by jointly learning to predict the correct semantic roles and correspondingly to generate suitable natural language explanations. LUMEN distinctly outperforms the best baseline across 18 standard natural language generation evaluation metrics. Our systematic evaluation and analyses demonstrate that characteristic multimodal cues required for adjudicating semantic roles are also helpful for generating suitable explanations.
translated by 谷歌翻译
Over the recent twenty years, argumentation has received considerable attention in the fields of knowledge representation, reasoning, and multi-agent systems. However, argumentation in dynamic multi-agent systems encounters the problem of significant arguments generated by agents, which comes at the expense of representational complexity and computational cost. In this work, we aim to investigate the notion of abstraction from the model-checking perspective, where several arguments are trying to defend the same position from various points of view, thereby reducing the size of the argumentation framework whilst preserving the semantic flow structure in the system.
translated by 谷歌翻译
This paper addresses the problem of position estimation in UAVs operating in a cluttered environment where GPS information is unavailable. A model learning-based approach is proposed that takes in the rotor RPMs and past state as input and predicts the one-step-ahead position of the UAV using a novel spectral-normalized memory neural network (SN-MNN). The spectral normalization guarantees stable and reliable prediction performance. The predicted position is transformed to global coordinate frame which is then fused along with the odometry of other peripheral sensors like IMU, barometer, compass etc., using the onboard extended Kalman filter to estimate the states of the UAV. The experimental flight data collected from a motion capture facility using a micro-UAV is used to train the SN-MNN. The PX4-ECL library is used to replay the flight data using the proposed algorithm, and the estimated position is compared with actual ground truth data. The proposed algorithm doesn't require any additional onboard sensors, and is computationally light. The performance of the proposed approach is compared with the current state-of-art GPS-denied algorithms, and it can be seen that the proposed algorithm has the least RMSE for position estimates.
translated by 谷歌翻译